
Copyright © 2022, MARIN Page 1 of 3

Image management
Image Management in Quaestor
Quaestor has the ability to deal with- and present binary information, such as pictures, in the knowledge browser and using the objWorkbase QBinaries
ect. In the following, we briefly describe the current possibilities for using binary data in the knowledge base and in solutions focussing on the use of
images (Click on for a detailed description how to create and fill the QBinaries object).QBinaries

Please note that by default all Quaestor constants are given the @HIDE attribute. So please select the "Show hidden data" option in the
"Modeller" tab of the Options window.

To show pictures based on selections in the or , binaries can be coupled to a frame or parameter value in the following Knowledge Browser Workbase
ways:

Method 1, direct reference to a file:

The first method is to refer to image files accompanying a knowledge base.

Any knowledge base has its own file structure under the knowledge base directory (by default, this will be under My
Knowledge\Kbs_KnowledebaseName in which KnowledebaseName is the name of the current knowledge base, without extension.
The directory tree under this level will contain a directory Html\images in which the standard set from the Html\images directory present on
the Quaestor program directory will be present.

In the My Knowledge\Kbs_KnowledebaseName\Html\images directory one can store a collection of images related to this knowledge base which can
be referred to by including in the parameters' data slot or (object related) reference an attribute:
@PICTURE:FigureX.gif

FigureX.gif needs to be present in the above mentioned directory. If not, the standard background picture will be shown in the manner described above.

No use is made of the QBinaries picture database described above. The knowledge engineer is solely responsible for ensuring the availability of the
images in the ._KnowledebaseName directory.

So, by renaming the knowledge base or by copying the knowledge base to another location, the connection with the original .
_KnowledebaseName\Html\images directory is lost and the images will not be automatically available to the copied/renamed knowledge base, unless
the knowledge engineer has copied them to the new (correct) location.

Method 2, reference to the binary included in the frame:

It is also possible to include an image (object) in a frame by the menu option Include Binary in Frame.

So if you include and you write in the data slot: Quaestor will first save the binary and than show it as the picture.FigureX.gif @PICTURE:FigureX.gif

This method can be followed if the images unique purpose is to be presented with that single parameter. As soon as you need that image on more than
one location, it will introduce (undesired) redundant data in the knowledge base.

Method 3, reference to a QBinaryID in the QBinaries object:

If we use the QBinaries database, we ensure the availability of a collection of images independent from the name or location of a knowledge base. In
this case we have several ways in which we can make an image appear. By introducing the attribute:
@PICTURE::5

in a frame, the image Figure 5.gif will be presented as soon you reach this frame in the knowledge browser (in the knowledge base presented in fig.1).
Please note the double semicolon in which is used to distinguish the value 5 from a file name. in this way, it is possible to show a single @PICTURE::5
image on multiple locations without redundancy. Based on the value behind the double semicolon, the QBinary image value in the first record in Dataset

 with a value of 5 will be presented..QBinaries QBinaryID

Method 4, reference to a parameter containing a binary or a reference to a binary:

Instead of immediately referring to a file one can refer to another parameter:
@PICTURE:Lpp

If the parameter Lpp contains a picture reference like the methods described above, this reference is inherited by the frame containing the @PICTURE:
Lpp attribute.

https://mods.marin.nl/display/QUAESTOR/Workbase
https://mods.marin.nl/display/QUAESTOR/QBinaries+object
https://mods.marin.nl/display/QUAESTOR/QBinaries+object
https://mods.marin.nl/display/QUAESTOR/@HIDE
https://mods.marin.nl/display/QUAESTOR/Knowledge+Browser
https://mods.marin.nl/display/QUAESTOR/Workbase
https://mods.marin.nl/display/QUAESTOR/QBinaryID

Copyright © 2022, MARIN Page 2 of 3

1.

2.

This method will work in combination with all methods 1-3.

Method 5, reference to the QBinaries object based on a parameter value equal to QBinar
yID:

Instead of a Knowledge Browser-centered approach to presenting images/objects, one can connect images to parameter values.

By including only the @PICTURE attribute, so without , or , the current value of this parameter will be used as the file name parameter name value QBina
 search key.ryID

Please note that in the event of a VALUE parameter the formatted value of the parameter will be used as search key. Thus, a value of 2 will be
provided as 2.00 if a Fixed Format with 2 decimals (FF2) is used. The used Note that a QBinaryID string of 2 will not fulfil this argument value.
value will be the parameter value of the current solution/dataset/object/case. Parameters not having the single @PICTURE attribute will not be linked to
images in this fashion.

Connecting values to images as described under Method 5 is a useful concept with two limitations, however:

if you want to present the same image for multiple values, you need to introduce multiple instances of an image in ;Dataset.QBinaries

Generic parameters can have object dependent references, each containing sets of option lists that are solely related to particular objects.
This implies that one wishes to relate images not only to parameter values but also to the object in which the value exists.

Method 5a, reference using a Boolean expression for QBinaryID:

The first limitation implies that if you want to present the same image for multiple values you need to introduce multiple instances of an image in

Dataset.QBinaries, one of each value that may occur. In order to get around this limitation, it is possible to provide a Boolean expression for iQBinaryID
nstead of a single value. The expression need to be preceded by @. Examples are:

@ParX=1 OR ParX=2 OR ParX2=6

@ParX=>1 AND ParX<6

In fig.1 the constraint @a>3 AND a<9 is connected to Figure 6.gif. For any value >3 and <9, the image Figure 6.gif will be shown. In the constraint all
intrinsic Quaestor functions can be used including brackets. However, functions using objects are not evaluated.

Method 5b, reference using a script to refer to object dependent images:

The second limitation of Method 5 is related to generic parameters. Generic parameters have object dependent references, each containing e.g. sets of
 that are solely related to particular objects. This implies that one wishes to relate images not only to parameter values but also to the object option lists

in which the value exists, i.e. it may become necessary to relate to value X of in object and to value of in object ImageA Par_i Obj_j !ImageB X Par_i
 .The way to do this is to use the in the object-related references as in the following example from a parameter Switch.Obj_k lists

><

=misc= Switch mode

0Switched in parallel

=Diesel.LTCooler=

-1Switched in series cold:12

1Switched in series warm:13

@PICTURE

=Diesel.HTCooler=

-1Switched in series cold:14

1Switched in series warm:15

https://mods.marin.nl/display/QUAESTOR/QBinaryID
https://mods.marin.nl/display/QUAESTOR/QBinaryID
https://mods.marin.nl/display/QUAESTOR/QBinaryID
https://mods.marin.nl/display/QUAESTOR/QBinaryID

Copyright © 2022, MARIN Page 3 of 3

@PICTURE

=InjCooler=

-1Switched in series cold

0Switched in parallel

1Switched in series warm

In this example, in any instance of the object Diesel.LTCooler the reference

-1Switched in series cold:12

1Switched in series warm:13

@PICTURE

will be available. In this object, for a value of -1 the with value of 12 will be shown in the Illustration form. Switch Dataset.QBinaries.qBinary QBinaryID
For a Switch value of 1 the with value of 13 will be shown. The attribute is included in order to Dataset.QBinaries.QBinary QBinaryID @PICTURE
tell Quaestor that it should search for an image/object in .Dataset.Binaries

In any instance of the object Diesel.HTCooler this will be picture 14 and 15 respectively. This example shows how to relate different images to the
same parameter value in different object instances.

Method 6, reference using an |OPTIONS| script

In the above picture, some parameters like and some values of image references are included.ConfigType$ MainLTCoolerType$

For instance, the fifth case value of is in which 5 is considered to be a reference to an image. ConfigType$ separated:5 Dataset.QBinaries.QBinaryID
In this example, the object is data source to an script for parameter , a set in which all elements of a Dataset.Options |OPTIONS| OPTIONS# TeLiTab
case of will be its value. The script is discussed in a separate article in Quaestor.Dataset.Options |OPTIONS| Data use and management

The script results in invoking a list view including a browser component that will present the referred to image per parameter that is |OPTIONS|
proposed in the list view. This allows a stepwise selection of a database record supported by images that are context sensitive, i.e. for each step in the
selection process, it now possible to present relevant graphical images(, spreadsheet, pfd documents, etc).

https://mods.marin.nl/display/QUAESTOR/QBinaryID
https://mods.marin.nl/display/QUAESTOR/QBinaryID
https://mods.marin.nl/display/QUAESTOR/QBinaryID
https://mods.marin.nl/display/QUAESTOR/TeLiTab
https://mods.marin.nl/display/QUAESTOR/Data+use+and+management

	Image management

