INTEGR

INTEGR returns the integrated value of a function in a two-dimensional space

Syntax

1. INTEGR(Pno\%, 2, "ColLab\$_1", "ColLab\$_2", Mode\%=0,1 or 2, X_from, X_to)
2. INTEGR(0, Npoints\%, x_1, y_1, x_2, y_2,..., x_n, y_n, , Mode\%=0,1 or $2, \bar{X}$ from, X _to)
3. INTEGR(@ObjFn(..), 2, @ObjColPar 1, @ObjColPar 2, Mode\% $=0,1$ or $2, \bar{X}$ from, \bar{X} to)
4. INTEGR(Telitab\$, 2, "CoILab\$_1", "ColLab\$_2", Mode\%=0,1 or 2, X_from, X_to)

Arguments

- Pno\% is the number that refers to the TeLiTab sets in the Data slot. Pno\% should be an integer value or a parameter which is assigned an integer value and is the number of the TeLiTab set in the expressions' data slot.
- Npoints\% is the number of points (x, y) that are given in direct definition.
- @ObjFn() refers to the Object from which data will be used.
- TeLiTab\$ refers to the string parameter that contains the TeLiTab.
- "ColLab\$_1" and @ObjColPar_1 refer to the column that will be used as the parameter X in the integration.
- "ColLab\$_2" and @ObjColPar_2 refer to the column that will be used as the parameter Y in the integration.
- Mode\% is the mode of integration:

Mode\% =0 Riemann
Mode\% = 1 Trapezium
Mode\% =2 Simpson.

- X_from and X_to are the parameters between wich will be integrated.

Remarks

1. See also Telitab access for a generic description on the use of TeLiTab data
2. Similar to other Data analysis functions, the DISINT is a convenient way to evaluate data. Please also look at these functions for syntax examples
3. INTEGR computes the integral from $x=x$ from to $x=x$ to using either:

- Mode\%=0 -> Riemann (bar-wise) integration
- Mode\%=1 -> Trapezium rule
- Mode\%=2 -> Simpson rule

1. x from and x to should be within the limits of the Telitab data provided
2. Integration can only be performed in 2D space. Multi-dimensional integration is not (yet) implemented (Ndim\% = 2). Multi-dimensional integration can be performed by nested INGER() functions.
3. Please realise the dataset provided to INTEGR should be a function. Every x-value should have one y-value.

Examples

Example 1: Telitab in dataslot

In this example, syntax 1 is used.
Let y be defined by
$y=\operatorname{INTEGR}(1,2$, "XC", "YC", 0, x_1, x_2)
This is the command for a Riemann integral between $\mathrm{x} _1$ and $\mathrm{x} _2$, using the points of the curve in the Dataslot. The following Telitab set is placed in the Data slot:
|INTEGR1|
0
2 "XC" "YC"
"1" 11
"2" 24
"3" 39
"4" 416
"5" 525
"6" 636
"7" 749
"8" 864
"9" 981
"10" 10 100|

For $x _1=2.5$ and $\times _2=5$, this relation returns
$y=28.25$.
Remark
In case you apply the symbolic addressing of the columns for the description of the point on the curve or surface to compute the differential for, e.g "Par_x" and "Par_y", please make sure that your Telitab set contains these names. If not, an error message is generated and the calculation is stopped.

Example 2: Direct Definition

This example will illustrate syntax 2 .
In direct definition, the points of the curve are stated in the Relation itself:
INTEGR(Pno\%, Npoints\%, x_1, y_1, x_2, y_2,... x_n, y_n, Mode\%=0,1 or 2, X_from, X_to)

If Pno\%=0 then all $x _i$ and $y _i$ values should be numeric expressions. The minimum number of x, y data points Npoints $\%$ in the list is 2 in which case the interpolation (and differentiation) is performed linear.
Let y be defined by
$\mathrm{y}=\operatorname{INTEGR}\left(0,4,1,1,2,4,3,9,4,16,1, x _1, x _2\right)$
For $x _1=2.5$ and $x _2=5$, this relation returns
$y=28.25$

Example 3: TeLiTab in object or string

Syntax 3 and 4 are similar to syntax 1 , but now existing telitabs are used instead of the dataslot.

