
Copyright © 2022, MARIN Page 1 of 6

Using objects
Using Quaestor objects
Quaestor employs a powerful ‘parameter’ concept, i.e. a parameter can be a numerical attribute like length, mass and cost, but also nominal (string)
values can be dealt with such as color, client name or contents of program output files.

Apart from the numerical and nominal parameter type, Quaestor uses the Object type. A Quaestor object is a parameter which has a set of parameters
with values as value, either static (only data, e.g. a speed-power curve or a list of components) or dynamic, i.e. a computational model (input and
output) fulfilling the role of function or subroutine in an assembled model (a Solution in the Quaestor Workbase).

1 Objects as Dynamic Function

The object is just a frame in the knowledge base such as a parameter, relation or constraint. For example Quaestor PowerCalc

In a Relation, can be used as if it were an intrinsic function like (), () etc. as in the following example:PowerCalc SIN SELECT
Power = PowerCalc(@Power, @Method:"Savitsky", @Speed:Vdes, L, B, T, D)

In this example represents the object (container) of a computational model that will compute Power on the basis of the values of PowerCalc Method="
, and the actual values of , , and . The character indicates that the parameter should exist the object, the Savitsky" Speed=Vdes L B T D @ in PowerCalc

first parameter after the opening bracket () is the top goal of the object, means that Speed in should get @Power PowerCalc @Speed:Vdes PowerCalc
the value of Vdes. Values of L, B, T and D are required but not unique to this object and therefore requested as normal parameters and should be
available "above" or outside the object. See also for more detail.Quaestor syntax

The following modeling rules apply:

If the model in needs data that is not in the argument list, it is either requested to the user in the object or inherited from the models PowerCalc
top level.
If input is provided manually, the value is placed in the models top level. This implies that the value is available (can be inherited) by objects all
in the model.
If the parameter has the attribute in its data slot, the value is stored in the object and is available to that object.@LOCAL only

In the above example, the () function returns the value of Power that is computed by the model that is assembled for the top PowerCalc PowerCalc
goal Power.

The object created by evaluating the above relation is reusable and extensible: it is possible to request other goals from the same object PowerCalc
instance, for example the rotation rateRevs:
N = PowerCalc(@Revs, @Method:"Savitsky", @Speed:Vdes, L, B, T, D)

If this relation is evaluated later than the earlier one, and Revs is not yet computed, is added as top goal to the object after which the object Revs
attempts to add the necessary relations to its model and will compute its value.

If another relation is evaluated that evaluates with other input, the calculation in is redone. Only the last results in the object are Power PowerCalc
maintained in the solution. Use the attribute to force the object to save all its values. Realize that this might require more memory and @MULTICASE
will let your project files grow significantly.

The table below lists the return type for every Left side, Goal type, List/Table and Return type combination, along with an example. So if the left side is
a String the return type is a Telitab, when the left side is a value the return type is a pointer to an object, except when the goal type is a list of values,
then the return type is a value. Assigning a pointer to a value parameter is useless as it can not be used. It only makes sense in a function call. Then it
is used implicitly. However the expression editor does not support this yet. At the moment it is possible to define an expression that will assign a pointer
to a value parameter. This will be solved in a future release. However, the case when the left side is a value and the goal type is a table of values can
only be detected run-time, and can therefore not be prevented in the expression editor.

Left

side

Goal

type

List /

Table Return type Expression Goal

Input

Value Value List Value Y = DataObject(@Y, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) Y = X^2 Xmax = 3 Xmin = 3

Value Value Table Pointer to
DataObject

Y = DataObject(@Y, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) Y = X^2 Xmax = 3 Xmin = 1

Value String List Pointer to
DataObject

Y1 = DataObject(@D$, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) D$ = STR$(2*X^2) Xmax = 3 Xmin = 3

Value String Table Pointer to
DataObject

Y1 = DataObject(@D$, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) D$ = STR$(2*X^2) Xmax = 4 Xmin = 3

Value Telitab List Pointer to
DataObject

y2 = DataObject(@C#) C# = TELITAB#(0,A,
B)

 A = 1 B = 1

Value Telitab Table Pointer to
DataObject

y2 = DataObject(@C#) C# = TELITAB#(0,A,
B)

 A = 1(1)
10

B = 2(2)
20

https://mods.marin.nl/display/QUAESTOR/SIN
https://mods.marin.nl/display/QUAESTOR/SELECT
https://mods.marin.nl/display/QUAESTOR/General+Quaestor+syntax
https://mods.marin.nl/display/QUAESTOR/@MULTICASE

Copyright © 2022, MARIN Page 2 of 6

1.
2.

Value Object List Pointer to
ChildObject

y3 = DataObject(@ChildObject, @X:STR$(Xmin)+"(0.1)"
+STR$(Xmax))

ChildObject(@Y, X) Y =
X^2

Xmax = 3 Xmin = 3

Value Object Table Pointer to
DataObject

y3 = DataObject(@ChildObject, @X:STR$(Xmin)+"(0.1)"
+STR$(Xmax))

ChildObject(@Y, X) Y =
X^2

Xmax = 4 Xmin = 3

String Value List Telitab Y$ = DataObject(@Y, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) Y = X^2 Xmax = 3 Xmin = 3

String Value Table Telitab Y$ = DataObject(@Y, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) Y = X^2 Xmax = 3 Xmin = 1

String String List Telitab Y1$ = DataObject(@D$, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) D$ = STR$(2*X^2) Xmax = 3 Xmin = 3

String String Table Telitab Y1$ = DataObject(@D$, @X:STR$(Xmin)+"(0.1)"+STR$(Xmax)) D$ = STR$(2*X^2) Xmax = 4 Xmin = 3

String Telitab List Telitab y2$ = DataObject(@C#) C# = TELITAB#(0,A,
B)

 A = 1 B = 1

String Telitab Table Telitab y2$ = DataObject(@C#) C# = TELITAB#(0,A,
B)

 A = 1(1)
10

B = 2(2)
20

String Object List Telitab y3$ = DataObject(@ChildObject, @X:STR$(Xmin)+"(0.1)"
+STR$(Xmax))

ChildObject(@Y, X) Y =
X^2

Xmax = 3 Xmin = 3

String Object Table Telitab y3$ = DataObject(@ChildObject, @X:STR$(Xmin)+"(0.1)"
+STR$(Xmax))

ChildObject(@Y, X) Y =
X^2

Xmax = 4 Xmin = 3

2 Object as Pseudo-Intrinsic Functions

A second way to use the Quaestor object is to define a Function.

You need:

 to create a generic relation for you function;
to define the general syntax for you function;

The first is done in the normal way. The second is done by using the menu option in the and providing New Parameter/Function Knowledge Browser
the function definition:

In this example a pseudo intrinsic function is created to calculated the number.Reynolds

Reynolds is the Quaestor object, the top goal for the calculation to be performed with in the instance and , Speed and Temp are Re Reynolds Length
the input arguments.

Relations should be available to compute on the basis of , and , as in and . This form of Re Length Speed Temp Re=Speed*Length/Nu Nu=f(Temp)
function definition will present the () function in the expression editor as if it were a intrinsic function like () or (). Any Reynolds Quaestor SIN SELECT
values or parameter can be used to fill in on the locations of , and , as in the following example:Length Speed Temp
RN75=Reynolds(C0_75,SQRT(V_a^2+(0.75*Pi*V_a/J)^2),CurTemp)

RN75 represents the number of the propeller blade section at in which:Reynolds 0.75R
Length = C0_75

Speed = SQRT(V_a^2+(0.75*Pi*V_a/J)^2)and
Temp = CurTemp

Please note that the above could also be written in the first method as follows:

RN75 = Reynolds(@Re, @Length:C0_75, @Speed:SQRT(V_a^2+(0.75*Pi*V_a/J)^2), @Temp:CurTemp)

This example shows that the pseudo intrinsic way of defining functions is an elegant way to use Quaestor objects, in particular since the functions that
are defined in this manner are presented in the Quaestor/Functions overview in the browser.

https://mods.marin.nl/display/QUAESTOR/Knowledge+Browser
https://mods.marin.nl/display/QUAESTOR/SIN
https://mods.marin.nl/display/QUAESTOR/SELECT

Copyright © 2022, MARIN Page 3 of 6

It should be noted that the pseudo intrinsic functions presented in the Functions class of the Quaestor tree node, belong to the knowledge base last in
focus before entering the function list. The expression editor recognizes these functions and presents the arguments one by one.

The pseudo intrinsic function can be re-used for other input but cannot be used to compute other values as the expression editor only allows the
argument sequence that is predefined in the function definition. Again, only the last results in the object are maintained in the solution.

3 Objects Relations

A novel and powerful form of using objects is as Object Relation. It allows the creation of basic configurators, the Taxonomy approach is an Quaestor
improved implementation.

The following example shows how this works.

By introducing the following list of relations in a new knowledge base, a miniature configurator is obtained:

Relation 1:
Ship(@ sDeck ,@ sBulkhead)

Relation 2:
sDeck (@Deck)

Relation 3:
Deck(@Area, @ID$)

 and put " " in the data slot of on a new line@ASKORDER:Nr Deck

Relation 4:
sBulkhead (@Bulkhead)

Copyright © 2022, MARIN Page 4 of 6

Relation 5:
Bulkhead(@Area, @ID$)

 put in the data slot of on a new line"@ASKORDER:Nr" Bulkhead

Relation 6:
Area = L*B

 put @LOCAL attribute in the data slots of L and B

Relation 7:
ID$ = CUROBJECT$(1)

Do not forget to provide the parameters dimensions in the Frame viewer, top right.

Include in the knowledge base with the menu option as Value and put in its data slot.Nr New Parameter/Function @LOCAL

When creating the relations, Quaestor may ask whether parameters are of the Object type. Obviously, , , and arsDeck Deck sBulkhead Bulkhead
e objects, is not an object but a value. is automatically made into a string due to the suffix.Area ID$ $

You see that the relations in object form do not have a left hand term such as in . If an object such as or is created in this Area = L*B Ship Deck
manner, they are automatically provided with the attribute. Non-object parameters that are used as goal or input arguments in the @LOCAL
function do not necessarily need the attribute, as in the case of and , because they are automatically instantiated in the @LOCAL ID$ Area
object. L and B, however, are not given as function arguments but introduced into the object by the relation . If and are not Area = L*B L B @LOC

, the input is saved in the solution's top level. The result will be that all and will have the same and since these can be AL decks bulkheads L B
found higher up in the model.

If is selected as top goal (by double clicking on the Ship parameter) and the dialogue is started, you are requested to provide the number of , Ship decks
their respective and and the same for the .L B bulkheads

The result you get after finishing the dialogue is an object model of containing all and .Ship decks bulkheads

4 Object Initiation and Access

Next to the direct use of Quaestor objects as functions, it is possible to refer and use value from these objects in expressions. This in an implicit way of
using the objects because they have to be created when you want something it contains.

Simply create a new knowledge base with the following relations:
QuadraticCurve(@Y,@X:"0(1)20")
Y = X^2

Copyright © 2022, MARIN Page 5 of 6

Couple the object to the relation Y = X^2 through the menu option in the Knowledge browser:QuadraticCurve Constraint Connect

This makes that Y = X^2 is only valid within an instance of .QuadraticCurve

Enter the next relation:
Y = DQUAD(@QuadraticCurve, 2, @X, @Y, X)

Select Y as top goal and enter a value 3.5 for X. You will see that the object is created in the solution and you will get a result of 12.25.QuadraticCurve

Enter an additional relation that selects the third Y value from the object:QuadraticCurve
Y_3 = QuadraticCurve.Y.3

Select Y_3 as top goal will yield a result of 4.0.

Alternative 1:

A similar result can be achieved with only two relations.

Introduce into an empty the relations:Quaestor
Y = DQUAD(@QuadraticCurve, 2, @X, @Y, X)
Y = X^2

Connect this relation to the object as is done above.QuadraticCurve

X must be provided with the attribute in its dataset, since it is to be used both in the solution top level and in the level.@LOCAL QuadraticCurve

QuadraticCurve must be provided with the attribute in the :OBJ Determined By property

Copyright © 2022, MARIN Page 6 of 6

In this case is introduced in the model by the first relation. And the attribute makes it into a non-computable object which QuadraticCurve OBJ
will create the and values through the and arguments in the relation (the stands for parameter presence in the object).X Y @X @Y @

If you ask for and give respectively (in the) and (in the) you will get the obvious result of .Y X=6 solution level X=1(1)10 QuadraticCurve level 36

Alternative 2:

Yet another way to create objects is illustrated by the following relations:
 Z=QuadraticValue.Y
 Y=X^2

Ask and give and you will get as result. The object in the solution contains the calculation with the relation.Z X=3 9 QuadraticValue Y=X^2

See the for all the specific syntax for objects.Quaestor syntax

	Using objects

