POLYGON

POLYGON returns properties of an area enclosed by a polygon in two dimensions relative to lines, axes and points:

- properties of an area enclosed by a polygon in two dimensions or;
- properties of a line section within a polygon in two dimensions or;
- Information on whether a point is located inside or outside a polygon in two dimensions.

Syntax

1. POLYGON(Pno\%, Ndim\%[=2], "ColLab\$_1", "ColLab\$_2", X0, Y0, XN, YN, Mode\%)
2. POLYGON(0, Npoints\%, X_11, Y_12, X_21, Y_22,.., X_n1, Y_n2, X0, Y0, XN, YN, Mode\%)
3. POLYGON(@ObjFn(..), Ndim\%[=2], @ObjColPar_1, @ObjColPar_2, X0, Y0, XN, YN, Mode\%)
4. POLYGON(Telitab\$, Ndim\%[=2], "CoILab\$_1", "ColLab\$_2", X0, Y0, XN, YN, Mode\%)

Arguments

- Pno\% is the number that refers to the TeLiTab sets in the Data slot. Pno\% should be an integer value or a parameter which is assigned an integer value and is the number of theTeLiTab set in the expressions data slot.
- Ndim\% is the number of dimensions, which is 2 for the POLYGON function.
- Npoints\% is the number of points (X, Y) that are given in direct definition.
- @ObjFn() refers to the Object from which data will be used.
- TeLiTab\$ refers to the string parameter that contains the TeLiTab data to be used.
- "CoILab\$_1" and @ObjCoIPar_1 refer to the column containing the first values.
- "ColLab\$_2" and @ObjColPar_2 refer to the column containing the second values.
- $X 11, Y _12, X 21, Y 22, . ., X n 1, Y n 2$ are the X and Y coordinates of the points of the polygon that are given in the direct definition.
- $X \overline{0}, Y 0$ are the \bar{X} and \bar{Y} coordinates of point ($X 0, Y 0$).
- XN, YN are the X and Y coordinates of point (XN, YN).
- Mode\% is the option of the function. There are 25 mode. See Remarks for all options.

Remarks

POLYGON can be used in the following ways:

1. Properties of an area enclosed by a polygon in two dimensions

For Mode\% = 1 to 15 the function POLYGON returns a property of the polygon.
In these cases the points ($\mathrm{X} 0, \mathrm{Y} 0$) and (XN, YN) are not used. These points are no part of the polygon point set and X0, Y0, XN, YN should all be 0 , to make sure that they will not influence the result.

- For Mode\%=1, the function returns the area of the polygon.
- For Mode\%=2, idem with the polygon mirrored in the X -axis.
- For Mode\%=3, idem with the polygon mirrored in the Y-axis.
- For Mode\%=4, the function returns the COGX (X coordinate of the Centre Of Gravity) of the polygon.
- For Mode\%=5, idem with the polygon mirrored in the X-axis.
- For Mode\%=6, idem with the polygon mirrored in the Y-axis.
- For Mode\%=7, the function returns the COGY (Y coordinate of the Centre Of Gravity) of the polygon.
- For Mode\%=8, idem with the polygon mirrored in the X -axis.
- For Mode\%=9, idem with the polygon mirrored in the Y -axis.
- For Mode\%=10, the function returns the 2 nd order moment of the area around the X-axis through the COG.
- For Mode\%=11, idem with the polygon mirrored in the X-axis.
- For Mode\%=12, idem with the polygon mirrored in the Y-axis.
- For Mode\%=13, the function returns the 2nd order moment of the area around the Y-axis through the COG.
- For Mode\%=14, idem with the polygon mirrored in the X-axis.
- For Mode\%=15, idem with the polygon mirrored in the Y -axis.

2. Properties of a line section within a polygon in two dimensions

For Mode\% = $\mathbf{1 6}$ to $\mathbf{2 4}$ the function POLYGON returns properties of a line section within a polygon in two dimensions.
In these cases the point $(X O, Y 0)$ is the starting point and $(X N, Y N)$ is the end point of the line. This line is not a part of the polygon and the property is calculated only for the section(s) inside the polygon.

- For Mode\%=16, the function returns the length of the line section(s) within the polygon.
- For Mode\%=17, idem with the polygon mirrored in the X-axis.
- For Mode\%=18, idem with the polygon mirrored in the Y -axis.
- For Mode\%=19, the function returns the 1st order moment of the line section(s) within the polygon around (X0, Y0).
- For Mode\%=20, idem with the polygon mirrored in the X-axis.
- For Mode\%=21, idem with the polygon mirrored in the Y-axis.
- For Mode\%=22, the function returns the 2nd order moment of the line section(s) within the polygon around (X0, Y0).
- For Mode\%=23, idem with the polygon mirrored in the X-axis.
- For Mode\%=24, idem with the polygon mirrored in the Y -axis.

3. Determine whether a point is located inside or outside a polygon in two dimensions

For Mode\% = $\mathbf{2 5}$ to $\mathbf{2 7}$ the function POLYGON returns " 1 " when point $(\mathrm{XO}, \mathrm{Y} 0)$ is inside the polygon and " 0 " when it is outside the polygon . In these cases the point (XN, YN) is not used. XN, YN should both be 0 , to make sure that they will not influence the result.

- For Mode\%=25, the function returns " 1 " when point ($\mathrm{X} 0, \mathrm{Y} 0$) is inside the polygon and " 0 " when it is outside the polygon.
- For Mode\%=26, idem with the polygon mirrored in the X-axis.
- For Mode\%=27, idem with the polygon mirrored in the Y-axis.

Examples

Example 1: Syntax 1 (telitab in dataslot), Properties of the area

The relation
POLYGON(1, 2, "XC", "YC", 0, 0, 0, 0, Mode)
contains the following Telitab set in the Data slot:

```
|POLYGON1]
```

0
2 "XC" "YC"
"1" 00
"2" 10
"3" 11
"4" 0 1|
The polygon is a square with corner points $(0,0),(1,0),(1,1)$ and $(0,1)$, this gives for example the following properties:

- For Mode = 1 , the area of the polygon is returned: 1.00
- For Mode = 2, the area of the polygon mirrored in the X-axis is returned: 2.00
- For Mode $=4$, the COGX (X coordinate of the Centre Of Gravity) of the polygon is returned: 0.50
- For Mode $=10$, the 2 nd order moment of the area around the X-axis through the COG is returned: 0.08
- For Mode $=15$, the 2 nd order moment of the area around the Y-axis through the COG is returned for the polygon mirrored in the Y-axis: 0.67

Example 2: Syntax 1 (telitab in dataslot), Properties of a line section

The function:

```
POLYGON(1, 2, "XC", "YC", X0, Y0, XN, YN, Mode)
```

with the TeLiTab of the previous example in the dataset gives the possibility to calculate properties of a line section within the polygon. Lets take a look at a line between the points $(0,0)$ and $(2,2)$:
$\mathrm{X0}=0$
$Y 0=0$
$\mathrm{XN}=2$
$\mathrm{YN}=2$
Only the section between the points $(0,0)$ and $(1,1)$ is within the polygon, this gives for example the following properties:

- For Mode $=16$, the lenght of the line section is returned: 1.41
- For Mode $=19$, the 1 st order moment of the line section around $(X O, Y 0)$ is returned: 0.24

Example 3: Syntax 1 (telitab in dataslot), Information on wheter a point is located inside or outside the polygon

The function:
POLYGON(1, 2, "XC", "YC", X0, Y0, 0, 0, Mode)
with the TeLiTab of the first example in the dataset gives the possibility to determine whether a point is located inside or outside a polygon. Lets take a look at the point $(-0.5,0.5)$:
$\mathrm{X0}=-0.5$
$Y 0=0.5$
This results in the following properties:

- For Mode $=25$, the result is 0 because the point $(X 0, Y 0)$ is not inside the polygon.
- For Mode $=27$, the result is 1 because the point $(X O, Y 0)$ is inside the polygon mirrored in the Y -axis.

Example 4: Syntax 2 (direct definition)

In direct definition, the points of the polygon are stated in the relation itself:
POLYGON(0, Npoints\%, X_11, Y_12, X_21, Y_22,.., X_n1, Y_n2, X0, Y0, XN, YN, Mode\%)
The minimum number of (X, Y) data points Npoints\% in the list is 3 in which case the polygon is a triangle.
The syntax
$\operatorname{POLYGON}(0,4,0,0,1,0,1,1,0,1,0,0,0,0$, Mode $)$
is the same polygon as in the previous examples and e.g. for $\mathrm{Mode}=1$, the area of the polygon is returned: 1.00

